Non-abelian representations of the slim dense near hexagons on 81 and 243 points
نویسنده
چکیده
We prove that the near hexagon Q(5,2)× L3 has a non-abelian representation in the extra-special 2-group 21+12 + and that the near hexagon Q(5,2)⊗Q(5,2) has a non-abelian representation in the extra-special 2-group 21+18 − . The description of the non-abelian representation of Q(5,2)⊗Q(5,2) makes use of a new combinatorial construction of this near hexagon.
منابع مشابه
New constructions of two slim dense near hexagons
We provide a geometrical construction of the unique slim dense near hexagon with parameters (s, t, t2) = (2, 5, {1, 2}). Using this construction, we construct the rank 3 symplectic dual polar space DSp(6, 2) which is the unique slim dense near hexagon with parameters (s, t, t2) = (2, 6, 2). Both near hexagons are constructed from two copies of the unique generalized quadrangle with parameters (...
متن کاملThe classification of the slim dense near octagons
We classify all dense near octagons with three points on each line.
متن کاملOn Q-polynomial regular near 2d-gons
We discuss thick regular near 2d-gons with a Q-polynomial collinearity graph. For d ≥ 4, we show that apart from Hamming near polygons and dual polar spaces there are no thick Q-polynomial regular near polygons. We also show that no regular near hexagons exist with parameters (s, t2, t) equal to (3, 1, 34), (8, 4, 740), (92, 64, 1314560), (95, 19, 1027064) or (105, 147, 2763012). Such regular n...
متن کاملThe Veldkamp Space of the Smallest Slim Dense Near Hexagon
We give a detailed description of the Veldkamp space of the smallest slim dense near hexagon. This space is isomorphic to PG(7, 2) and its 2 − 1 = 255 Veldkamp points (that is, geometric hyperplanes of the near hexagon) fall into five distinct classes, each of which is uniquely characterized by the number of points/lines as well as by a sequence of the cardinalities of points of given orders an...
متن کاملA Universal Investigation of $n$-representations of $n$-quivers
noindent We have two goals in this paper. First, we investigate and construct cofree coalgebras over $n$-representations of quivers, limits and colimits of $n$-representations of quivers, and limits and colimits of coalgebras in the monoidal categories of $n$-representations of quivers. Second, for any given quivers $mathit{Q}_1$,$mathit{Q}_2$,..., $mathit{Q}_n$, we construct a new quiver $math...
متن کامل